LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – ALLIED

FOURTH SEMESTER - APRIL 2023

MT 4205 – BUSINESS MATHEMATICS

Dept. No. Date: 04-05-2023 Time: 09:00 AM - 12:00 NOON

SECTION A

Answer ALL questions:

1. Define cost function of a firm.

2. If the marginal function for output is given by $R_m = \frac{6}{(x+2)^2} + 5$, find the total revenue function by integration.

- 3. Find $\frac{dy}{dx}$ if $y = x^2 + y^2 2x$.
- 4. Identify the elasticity of the function $x = \frac{27}{n^3}$.
- 5. Find the nth derivative for the function $y = e^{ax}$.
- 6. Evaluate $\int (8x^7 5x^4 1)dx$.
- 7. If $A = \begin{pmatrix} 0 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}$, find 2*A*. 8. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix}$, then find A + B. 9. Given $\frac{x+1}{(x-1)(2x+1)} = \frac{A}{x-1} + \frac{B}{2x+1}$ then find *A* and *B*.
- 10. Define solution in linear programming problem.

SECTION B

Answer ANY FIVE questions:

$(5 \times 8 = 40)$

- 11. The total cost C for output x is given by $C = \frac{2}{3}x + \frac{35}{2}$. Find the cost when output is 4 units, also find the average cost of 10 units.
- 12. For the following pair of demand functions for two commodities X_1 and X_2 , determine the four partial marginal demands, the nature of relationship (Complementary, Competitive or neither) between X_1 and X_2 and the four partial elasticities of demand $x_1 = \frac{4}{p_1^2 p_2}$ and $x_2 = \frac{16}{p_2^2 p_1}$

13. If
$$x^{y} = e^{x-y}$$
 then prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^{2}}$.

14. Find the maximum and minimum values of the function $f(x) = x^4 + 2x^3 - 3x^2 - 4x + 4.$ 15. Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$.

16. Prove that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a).$$

17. Compute the inverse of the matrix $A = \begin{pmatrix} 1 & 0 & -4 \\ -2 & 2 & 5 \\ 3 & -1 & 2 \end{pmatrix}$.

18. Solve the equations 2x - 3y = 3, 4x - y = 11 using matrix method.

 $(10 \times 2 = 20)$

Max.: 100 Marks

PART C

Answer any TWO questions:

(2 X 20 = 40)

(10+10)

19. (a) If AR and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{AR}{AR - MR}$. Verify this for the linear demand law p = a + bx.

(b) If the marginal revenue function for output x is given by $R_m = \frac{6}{(x+2)^2} + 5$, find the total revenue

by integration. Also deduce the demand function.

20. (a) If
$$u = x^2 y^3 z^4$$
. Find $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$.
(b) Integrate $x^2 e^x$ with respect to x. (10+10)

- 21. Evaluate $\int \frac{(3x+7)}{2x^2+3x-2} dx$.
- 22. (a) Solve by Cramer's rule 2x+y-z=3; x+y+z=1; x-2y-3z=4.

(b) A factory manufactures two articles A and B. To manufacture the article A, a certain machine has to be worked for 1.5 hours and in addition a craftsman has to work for 2 hours. To manufacture the article B, the machine has for 1.5 hours. In a week the factory can avail of 80 hours of machine time and 70 hours craftsman's time. The profit on each article A is Rs. 5 and that on each article B is Rs. 4. If all the articles produced can be sold away, how many of each kind should produce to earn the maximum profit per week. Formulate the linear programming problem. (10+10)

