LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED

FOURTH SEMESTER - APRIL 2023
MT 4205 - BUSINESS MATHEMATICS

Date: 04-05-2023
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

SECTION A

Answer ALL questions:
$(10 \times 2=20)$

1. Define cost function of a firm.
2. If the marginal function for output is given by $R_{m}=\frac{6}{(x+2)^{2}}+5$, find the total revenue function by integration.
3. Find $\frac{d y}{d x}$ if $y=x^{2}+y^{2}-2 x$.
4. Identify the elasticity of the function $x=\frac{27}{p^{3}}$.
5. Find the nth derivative for the function $y=e^{\mathrm{ax}}$.
6. Evaluate $\int\left(8 x^{7}-5 x^{4}-1\right) d x$.
7. If $A=\left(\begin{array}{lll}0 & 2 & 3 \\ 2 & 1 & 4\end{array}\right)$, find $2 A$.
8. Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ 2 & -3\end{array}\right)$, then find $A+B$.
9. Given $\frac{x+1}{(x-1)(2 x+1)}=\frac{A}{x-1}+\frac{B}{2 x+1}$ then find A and B.
10. Define solution in linear programming problem.

SECTION B

Answer ANY FIVE questions:
($5 \times 8=40$)
11. The total cost C for output x is given by $C=\frac{2}{3} x+\frac{35}{2}$. Find the cost when output is 4 units, also find the average cost of 10 units.
12. For the following pair of demand functions for two commodities X_{1} and X_{2}, determine the four partial marginal demands, the nature of relationship (Complementary, Competitive or neither) between X_{1} and X_{2} and the four partial elasticities of demand $x_{1}=\frac{4}{p_{1}^{2} p_{2}}$ and $x_{2}=\frac{16}{p_{2}{ }^{2} p_{1}}$.
13. If $x^{y}=e^{x-y}$ then prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.
14. Find the maximum and minimum values of the function
$f(x)=x^{4}+2 x^{3}-3 x^{2}-4 x+4$.
15. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$.
16. Prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
17. Compute the inverse of the matrix $A=\left(\begin{array}{ccc}1 & 0 & -4 \\ -2 & 2 & 5 \\ 3 & -1 & 2\end{array}\right)$.
18. Solve the equations $2 x-3 y=3,4 x-y=11$ using matrix method.

PART C

Answer any TWO questions:

($\mathbf{2} \times 20=40$)
19. (a) If AR and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{A R}{A R-M R}$. Verify this for the linear demand law $p=a+b x$.
(b) If the marginal revenue function for output x is given by $R_{m}=\frac{6}{(x+2)^{2}}+5$, find the total revenue by integration. Also deduce the demand function.
20. (a) If $u=x^{2} y^{3} z^{4}$. Find $\frac{\partial u}{\partial x}, \partial u / \partial y, \partial u / \partial z$.
(b) Integrate $x^{2} e^{x}$ with respect to x .
21. Evaluate $\int \frac{(3 x+7)}{2 x^{2}+3 x-2} d x$.
22. (a) Solve by Cramer's rule $2 x+y-z=3 ; x+y+z=1 ; x-2 y-3 z=4$.
(b) A factory manufactures two articles A and B. To manufacture the article A, a certain machine has to be worked for 1.5 hours and in addition a craftsman has to work for 2 hours. To manufacture the article B, the machine has for 1.5 hours. In a week the factory can avail of 80 hours of machine time and 70 hours craftsman's time. The profit on each article A is Rs. 5 and that on each article B is Rs. 4. If all the articles produced can be sold away, how many of each kind should produce to earn the maximum profit per week. Formulate the linear programming problem.

